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Abstract

Behavioral state is known to influence interactions between thalamus and cortex, which are 

important for sensation, action and cognition. The thalamic reticular nucleus (TRN) is 

hypothesized to regulate thalamo-cortical transmission, but the underlying functional architecture 

of this process and its state-dependence are unknown. By combining the first TRN ensemble 

recording with psychophysics and connectivity-based optogenetic tagging, we find that the TRN is 

composed of distinct sub-networks. While activity of limbic-projecting TRN neurons correlates 

with arousal, sensory-projecting neurons participate in spindles and show elevated synchrony by 

slow waves during sleep. Conversely, sensory-projecting neurons are suppressed by attentional 

states, demonstrating common microcircuit mechanisms of sensory processing in sleep and 

attention. Bidirectional manipulation of attentional performance was achieved through optogenetic 
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manipulation of these TRN sub-networks. Our findings provide evidence for differential 

regulation of thalamic inhibition across brain states, suggesting that the TRN separately controls 

external stimulus processing and internally-generated computations, a basic determinant of 

cognitive function.

Introduction

How does the brain switch between processing of information originating from different 

sources to successfully guide behavior? How does it flexibly shift between processing of 

external stimuli and internal constructs to optimize cognitive performance? Answers to these 

questions will not only enhance our understanding of the neural basis of cognition, but will 

likely refine our concepts of brain disorders in which cognitive dysfunction is central 

(Stefansson et al., 2014). In humans, the shift between external and internal goal-directed 

cognition is known to recruit distinct cortical networks (Buckner and Krienen, 2013). For 

example, the default mode network, which includes medial prefrontal cortex, is suppressed 

during tasks that demand external attention but activated when subjects perform internally-

guided behaviors (Spreng et al., 2010). In contrast, the dorsal attentional network, which 

includes dorsolateral prefrontal cortex, is activated during external attention (Fox et al., 

2005). Electrophysiological recordings in non-human primates have shown that interactions 

among circuits of the dorsal attentional network are achieved through synchronous 

oscillatory dynamics (Miller and Buschman, 2012). Prefrontal regions lead parietal regions 

in top-down attention, while parietal regions lead prefrontal ones in bottom-up attention 

(Buschman and Miller, 2007). While the circuit mechanisms underlying the establishment of 

these cortical oscillatory dynamic states are incompletely understood, recent experiments 

have shown that the thalamus may play a central role in cortico-cortical synchrony required 

for cognitive performance (Saalmann et al., 2012). These findings add to established 

knowledge on the role of thalamus in regulating cortical dynamics in sleep (Magnin et al., 

2010; Steriade and Llinas, 1988), but raise important mechanistic questions on how the 

thalamus regulates cortical activity in an arousal state-dependent manner, a pre-requisite to 

understanding its precise role in cognitive function. Also, because the thalamus is 

functionally segregated into different nuclei (Jones, 2002), it may allow for establishing a 

multitude of cortical states depending on the type and number of nuclei engaged during a 

particular behavior.

Broad shifts in arousal offer an opportunity to study circuit mechanisms of how the brain 

switches between processing external stimuli and internally-generated activity. Several 

studies have delineated cortical mechanisms by which processing of sensory information is 

broadly suppressed during sleep (Issa and Wang, 2011; Livingstone and Hubel, 1981) but is 

enhanced in active waking (Livingstone and Hubel, 1981) and attentional states (Briggs et 

al., 2013; Desimone and Duncan, 1995), while others have established mechanisms by 

which offline limbic processing of memories is enhanced during sleep and quiet 

wakefulness (Buzsaki, 2010; Ji and Wilson, 2007; Karlsson and Frank, 2009). Within this 

framework, thalamo-cortical network engagement in processing of different information 

types is expected to occur in a state-dependent manner.
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The thalamic reticular nucleus (TRN), a group of GABAergic neurons that provides 

inhibitory control over thalamic nuclei, is strategically positioned to selectively modulate 

thalamo-cortical network activation (Crick, 1984; Pinault, 2004). In fact, based on its 

anatomical connections, Francis Crick postulated that “if the thalamus is the gateway to the 

cortex, the reticular complex might be described as the guardian of the gateway” (Crick, 

1984). The TRN has been implicated in sensory processing where its neurons exhibit 

complex visual receptive fields (Vaingankar et al., 2012) and respond to deviant (odd-ball) 

auditory stimuli (Yu et al., 2009). In behaving primates, visual TRN neurons are modulated 

by selective attention (McAlonan et al., 2008). The TRN has also been linked to internal 

processing during sleep, where its activity is associated with sleep rhythms and behavior 

(Cueni et al., 2008; Espinosa et al., 2008; Huguenard and McCormick, 2007), and its 

neurons are known to exhibit rhythmicity in relation to spindle oscillations (Steriade et al., 

1986), 9-15Hz dynamics that are observed in the cortex during sleep, which correlate with 

sleep stability (Dang-Vu et al., 2010), and sleep-dependent memory consolidation 

(Diekelmann and Born, 2010; Eschenko et al., 2006). How the TRN operates to support 

these different state-dependent functions is unclear, in part, due to a gap in knowledge about 

how TRN microcircuits are functionally organized. Physiological attributes of thalamic 

nuclei are known to depend on their anatomical connections (Jones, 1981), but the TRN has 

traditionally been viewed as a monolithic structure, with no link between its connectivity 

and function. While recent work in primates has shown distinct connectivity patterns for 

sensory and limbic TRN (Zikopoulos and Barbas, 2012), the impact of these anatomical 

substrates on thalamo-cortical function has remained unknown given the lack of 

physiological studies.

We directly addressed this gap in knowledge by recording from TRN ensembles in naturally 

behaving mice. Our recordings revealed a previously unknown functional diversity within 

TRN microcircuits. Specifically, two functional sub-populations of TRN neurons were 

identified that exhibited opposite modulation by sleep and attentional states. Connectivity 

and genetic-based dissection of intact TRN microcircuits revealed an anatomical basis for 

this functional segregation. Specifically, sensory-projecting neurons exhibited activity 

patterns consistent with inhibition of sensory processing during sleep but its augmentation 

during attentional states, while limbic-connected neurons exhibited little activity during 

sleep, likely enhancing offline limbic processing. TRN-specific optogenetic manipulations 

revealed its causal role in attentional performance, an effect that was recapitulated by 

selective sensory TRN sub-network manipulation. Together, our data show that the TRN 

consists of connectivity-based functional sub-networks that differentially participate in 

sensory and limbic processing in a state-dependent manner. This architecture may facilitate 

switching of cortical information processing between externally-driven and internally-

generated computations, a basic determinant of cognitive function.

Results

TRN recordings in the freely behaving preparation

To obtain stable recordings of TRN ensembles in mice during free behavior, we implanted 

arrays of adjustable extracellular recording electrodes targeting the dorsal pole of this brain 
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structure (Fig. 1A), which is known to be connected to both anterior limbic (Cornwall et al., 

1990) and visual sensory thalamic nuclei (Kimura et al., 2012). Electrode position was 

confirmed by physiological signals obtained during adjustment (Fig. 1, A to D), and post-

mortem histology (Fig. 1, E and F). TRN neurons were identified by their thin spike 

waveform compared to relay neurons as has been done in recent studies (Gardner et al., 

2013; Halassa et al., 2011) (Fig. 1G) and is normally performed for extracellular inhibitory 

neuronal identification in cortical (Cardin et al., 2009) and hippocampal recordings (Royer 

et al., 2012). Consistent with previous studies, many TRN neurons showed a bursting spike 

firing pattern most noticeable during slow wave sleep (SWS, 128/195, Fig. S1A, B), and 

about half of these neurons exhibited a particular burst structure (accelerando-decelerando) 

observed in other species (Marlinski et al., 2012; Vaingankar et al., 2012) (Fig. S1, C and 

D).

TRN neurons exhibit heterogeneous firing in relation to sleep spindle oscillations

One of the major functions attributed to TRN neurons is their role in generating spindle 

oscillations (Bazhenov et al., 2000; Contreras et al., 1993; Halassa et al., 2011). We 

examined the correlation between individual TRN neuronal rate functions and cortical 

electroencephalographic (EEG) spindle power in natural SWS (Fig. 2A, Fig. S2, A and B). 

Consistent with previous findings in unanesthetized cats (Steriade et al., 1986), we found 

that many TRN neurons were positively correlated with spindle power (Fig. 2A, Fig. S2B). 

However, surprisingly, we found that others were negatively correlated with this measure 

(Fig. 2A, Fig. S2B). Analysis of the correlation between TRN neuronal firing rates and 

cortical spindle power revealed a bimodal distribution (Fig. 2B, n = 7 mice). Neurons that 

were positively correlated to spindle power increased their firing rate specifically during 

spindle events (Fig. 2, C to E; see Fig. S2C and D for spindle detection examples), with 

stronger spindle-phase locking values observed for these neurons than negatively correlated 

ones (Fig. 2, F to H; see Fig. S2, E to F for unbiased detection of phase-locking). 

Conversely, neurons that were negatively correlated to spindle power were also negatively 

correlated to delta power (Fig. S2G), and exhibited a robust elevation in firing rate with 

increased arousal (arousal correlated, Fig. 2I). Thus, in SWS, two functional TRN sub-

populations are observed: one that is spindle correlated (SC) and another that is arousal 

correlated (AC). Equivalent numbers of these neurons were recorded from all animals with 

high recording yield and they exhibited no difference in overall firing rates or burst 

properties (Table S1).

Spindle-correlated TRN neurons exhibit state-dependent modulation consistent with 
regulation of sensory processing

Slow wave sleep is a state in which the cortical surface EEG is dominated by slow waves in 

the delta range (0.5-4Hz). These dynamics are associated with coordinated changes of 

excitability across cortical neurons (Steriade et al., 1993; Vyazovskiy et al., 2009), and are 

known to influence excitability in cortically-connected structures (Hahn et al., 2009). We 

found that TRN neurons were modulated by cortical delta, with both SC and AC neurons 

exhibiting the same degree of delta phase locking values (Fig. 3, A to D). However, while 

SC neurons showed preferred firing during delta wave troughs (corresponding to UP states, 

assessed by cortical multiunit activity), AC neurons showed a broad delta phase distribution 
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(Fig. 3, E and F). The narrow delta phase distribution of SC neurons suggested an enhanced 

probability of coordinated spiking across this population, which was confirmed by a SWS-

dependent increase in their spike-time synchrony (a short-latency cross-correlation measure, 

see Methods), compared to AC neurons (Fig. 3, G to I, Fig. S3). Because sensory processing 

is known to be diminished in SWS, this analysis suggested a role for SC neurons in 

enhanced inhibitory gating of sensory thalamic output during SWS. Exploratory behavioral 

experiments found that SC neurons were more likely to reduce their activity in a visual 

detection task, specifically during the period of elevated attentional load (Kahn et al., 2012), 

compared to AC neurons (Fig. S4). Together, these findings suggested selective 

participation of SC neurons in sensory processing across arousal states.

Optogenetics-assisted circuit dissection of TRN neurons reveals connectivity based 
subnetwork architecture

Because dorsal TRN projects to both sensory and limbic thalamus (Fig. S5), we asked 

whether functional attributes of SC and AC neurons were related to patterns of connectivity 

with thalamic targets. To enable selective targeting of the TRN, we used mice that expressed 

Cre recombinase (Cre) under the vesicular GABA transporter (VGAT) promoter (Vong et 

al., 2011). VGAT-Cre animals enabled selective expression of transgenes in the TRN, but 

not nearby thalamic nuclei, which do not contain VGAT positive neurons. This was 

achieved by injecting adeno-associated viruses (AAV) containing double-floxed cassettes, 

stereotactically into the TRN (Fig. S5A-F). To enable targeting of TRN neurons that project 

to specific thalamic nuclei, we used lentiviruses. These viruses exhibited two important 

attributes that resulted in connectivity-specific TRN neuronal tagging. First, because they 

were pseudotyped with a chimeric envelope protein composed of the extracellular and 

transmembrane domains of rabies virus glycoprotein (RG) and the cytoplasmic domain of 

VSV-G (see methods), they were taken up by axonal terminals in the thalamic target of 

interest and retrogradely transported. Second, these viruses were engineered to harbor 

double-floxed cassettes, and therefore only resulted in the expression of transgenes in the 

TRN when injected in VGAT-cre mice (Fig. S5, H to O). Using this strategy, we engineered 

retrograde lentiviruses with double-floxed cassettes containing the light activated ion 

channel channelrhodopsin-2 (ChR2) (Boyden et al., 2005; Fenno et al., 2011), and injected 

them into either sensory visual or anterior limbic thalamus of VGAT-Cre mice (Fig. 4, A 

and B). We performed extracellular recordings from optogenetically identified TRN neurons 

in three visual- and two anterior-injected mice while animals performed a visual detection 

task and in post-task sleep (Fig. 4, C and E). We identified visual thalamic-projecting or 

anterior complex-projecting neurons by their short-latency response to 10ms pulses of blue 

laser (5-10ms onset, Fig. 4, D and F). Visual-projecting neurons also showed a 30-50ms 

latency response to visual stimulation (Fig. 4, D and F). Electrode positions were 

additionally confirmed by postmortem histology (Fig. 4, G and H).

We found that visual-projecting TRN neurons were functionally different from limbic-

projecting ones. Specifically, visual-connected neurons were mostly spindle-correlated (SC) 

(Fig. 5A), while limbic-projecting neurons were arousal correlated (AC) (Fig. 5, B and C). 

Visual-projecting neurons exhibited significantly higher phase-locking to spindles than 

limbic-projecting neurons (Fig. 5D). Consistent with a role for visual-projecting TRN in 
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state-dependent control of visual processing, these neurons exhibited elevated pairwise 

spike-time synchrony in SWS while limbic-projecting neurons did not (Fig. 5E).

To investigate the participation of these sub-networks in information processing beyond 

sleep, we trained mice on a visual detection task that required attentional engagement. The 

task required the animal to correctly detect a visual stimulus (500msec) and subsequently 

move towards it, obtaining food from a reward site positioned underneath the stimulus 

location. A white noise auditory stimulus signaled the ability to initiate a trial. A trial was 

successfully initiated when the mouse broke an infra-red beam continuously for 500-700ms, 

ensuring proper head orientation during visual stimulus presentation. To minimize impulsive 

poking, rewards were only made available for a period of fifteen seconds following 

successful initiation (Fig. 5F). The absence of a correlation between initiation time and 

latency to collect reward as well as elevated latency during catch trials confirmed timely and 

specific response to visual stimulus presentation (Fig. S6, A to C). We found a robust and 

specific reduction in firing rate for visual projecting TRN neurons following trial initiation, 

but no significant modulation of limbic projecting TRN neurons during the task (Fig. 5G). 

This result is consistent with the engagement of visual TRN sub-network in state-dependent 

sensory visual processing. Furthermore, because the modulation occurred in the period prior 

to stimulus presentation, it suggested the participation of these neurons in attentional states, 

where visual thalamic inhibition may be transiently reduced to augment subsequent sensory 

processing.

Temporally-precise TRN activation diminishes performance on the visual detection task

To investigate whether the observed TRN neuronal firing rate changes were causal for visual 

detection task performance, we employed optogenetic manipulations. First, we injected a 

cre-dependent AAV (serotype2) expressing channelrhodopsin into the TRN of VGAT-Cre 

mice, which resulted in selective TRN expression (Fig. 6A). Because visual TRN neurons 

exhibited reduction in firing rate between task initiation and stimulus presentation, we used 

optogenetic activation to offset this reduction. Our investigations showed that pulse trains of 

>40Hz (4-5 mW, 200μm fiber [140-180 mW.mm−2]) results in sustained elevation of TRN 

neuronal firing rates and a concomitant reduction in their thalamic targets (Fig. 6B). We 

therefore used pulse trains of 50Hz frequency, pulse-width 2ms (duty cycle: 10%) to achieve 

a broad elevation of TRN firing rates throughout the initiation as well as stimulus 

presentation period (task stimulation). We found that this optogenetic stimulation regime 

resulted in a robust prolongation of latencies to collect reward in all mice examined (Fig. 6, 

C and E, Fig. S6, D and E, movie S1). This suggested that enhancing TRN neuronal firing 

rate during the window of elevated attentional demands was detrimental to behavior, 

supporting the notion that a sharp drop in a subset of TRN neuronal firing rates was 

important for optimal performance. To test whether the optogenetic effect was a result of 

diminished stimulus perception, we delivered a laser stimulation train of similar length that 

started upon stimulus presentation but avoided the initiation period (Fig. 6B). We found that 

this control stimulation did not impact performance on the task. Further, in support of the 

specificity of the optogenetic effect to the initiation period, we found that pulse trains of 

only 500ms limited to the post-initiation window resulted in diminished task performance 

(Fig. S6, D and E). Also consistent with the notion that TRN stimulation did not interfere 
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with stimulus perception, we found that this stimulation did not change the overall error 

rates in the task (Fig. S6D-E).

Temporally-precise TRN inhibition enhances attentional performance

The negative impact of TRN stimulation on task performance was consistent with the 

requirement for a subset of its neurons to reduce their firing rate during the attentional 

window. To fully test the causality of these physiological observations in the context of the 

task, we used eNpHR3.0 (Deisseroth and Schnitzer; Tye et al., 2011), a light-activated Cl− 

pump that is known to hyperpolarize neurons and inhibit spiking, to determine whether 

further reducing TRN firing rate would improve performance. To increase the likelihood of 

observing a behavioral modulation, we subjected mice to mild sleep deprivation (1-3 hours, 

at the beginning of their rest phase) which resulted in slightly diminished task performance 

evident by prolonged latencies (P < 0.05, rank-sum test). Consistent with a causal role for 

TRN neurons in optimal task performance, we found that optogenetic inhibition of these 

neurons resulted in improved performance in all mice examined (Fig. 6, F to H, Fig. S6, F 

and G, movie S2).

To test whether these effects were sub-network specific we performed bi-directional 

optogenetic manipulations in retrogradely-labelled TRN neuronal populations during the 

task (Fig. 6I). We retrogradely labeled visual-connected and limbic-connected TRN neurons 

with either ChR2 or eNpHR3.0. We found that ChR2-mediated activation of the visual-

projecting TRN during the attentional window of the visual detection task diminished 

performance, while its inhibition augmented performance. In contrast, neither activation nor 

inhibition of limbic-projecting TRN impacted performance (Fig. 6J), consistent with the 

observation that these neurons are not significantly modulated during that phase of the task 

(Fig. 5). These data also suggest that earlier results obtained with bi-directional 

manipulations of the TRN may be fully explained by effects on sensory-projecting neurons, 

a population that overlaps with the SC neurons identified earlier in this study. Our findings 

are unlikely to be explained by differences in optogenetic targeting, as comparable 

proportions of TRN neurons were tagged in these two preparations (anterior-projecting: 

31/100; visual-projecting: 52/190). In addition, there was no impact on error rates for any of 

these manipulations. Because the observed effects could be explained by neither sensory nor 

motor deficits, we suggest that they are likely cognitive. Also, because they occurred during 

the stimulus expectation period of the task, they are consistent with the involvement of TRN 

neurons in attentional states.

Discussion

A major attribute of cognitive function is the ability to flexibly switch between processing 

different types of information. Broad shifts in arousal states offer an opportunity to examine 

how the brain switches from external stimulus processing in wake to internal memory 

processing in sleep. By regulating the interactions within thalamo-cortical networks, the 

thalamic reticular nucleus (TRN) has been hypothesized to play an important role in 

cognitive function (Zikopoulos and Barbas, 2012). However, the precise nature of this 

regulation has been difficult to discern given the relative inaccessibility of TRN to 
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physiological recordings. As such, and in the absence of concrete experimental data, the 

TRN has traditionally been viewed as a monolithic structure, providing uniform inhibition to 

thalamic nuclei (Crick, 1984; Llinas and Steriade, 2006). In such a regime, it is unclear how 

the brain would be able to selectively control the interactions between functionally 

segregated thalamic nuclei and their cortical targets.

In this study, we have systematically examined the functional architecture of the thalamic 

reticular nucleus in the freely behaving mouse. We found that the TRN is composed of 

functionally segregated sub-networks defined by anatomical connectivity. Sensory-

projecting TRN regulates sensory processing in a state-dependent manner, while limbic-

projecting TRN exhibits little activity during quiescent states, perhaps enabling the 

engagement of its thalamic target in offline processing associated with other limbic circuits 

(e.g. hippocampal reactivation). Additionally, inhibiting sensory-projecting TRN neurons 

during attentional states results in enhanced performance on a visual discrimination task, 

identifying this sub-network as a possible target for cognitive enhancement (evident by 

reduced latency for sensory detection). Overall, our data show that the functional 

architecture of TRN sub-networks may have essential roles in mediating the impact of 

arousal states on higher level cognitive function (Koch, 1993), and that it may be utilized in 

state-dependent switching between sensory transmission and offline processing (Fig. 7).

Functionally distinct TRN sub-networks

Our initial recordings were in the dorso-rostral part of the mouse TRN (Fig. 1), where 

reticular neurons are known to project to anterior (Cornwall et al., 1990) as well as visual 

sensory nuclei (Kimura et al., 2012) (Fig. S5). In agreement with previous recordings in cats 

(Steriade et al., 1986), we found that many TRN neurons increased their firing rate with 

elevation in cortical spindle power. Our subsequent finding that visual sensory TRN neurons 

are likely to exhibit this attribute as well as phase-lock to spindles is consistent with 

recordings from the somatosensory TRN in freely behaving rats (Marks and Roffwarg, 

1993). The finding of a separate sub-population of TRN neurons (arousal correlated) is 

unexpected, and its link to limbic processing might have been previously missed because 

earlier studies did not target limbic-projecting sectors of the TRN. In contrast to sensory-

projecting TRN neurons, these neurons exhibited broad modulation by arousal state as seen 

in cortical (Vyazovskiy et al., 2009) and thalamo-cortical neurons (Weyand et al., 2001). 

Functional divergence of sensory and limbic TRN subnetworks was further evident during 

behavior in the visual detection task, where sensory neurons showed a sharp reduction in 

firing rate following task initiation (Fig. 5), while limbic neurons did not. Interestingly, 

limbic projecting neurons had comparable firing rates to AC neurons recorded in the first 

data set (Table S2 vs. Table S1). However, visual projecting neurons had different firing 

rates than SC neurons recorded earlier in the study. This may have been related to visual-

projecting neurons being recorded from more caudal parts of the TRN (Fig. 1 vs. Fig. 4).

The impact of TRN on cognitive function

The reduction in firing rate observed for sensory TRN neurons during the task window in 

which attentional demands were highest suggests the engagement of these neurons in 

attentional state modulation. It is important to note that this modulation is probably distinct 
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from the role of TRN in selective attention shown by studies in primates (McAlonan et al., 

2008), which have revealed a correlation between neural responses and task accuracy, rather 

than speed. Our task has examined TRN involvement in the behavioral state preceding 

stimulus detection. Because mice perform this task with high accuracy, their variability in 

performance is seen mostly in latency, which is likely to reflect variability in attentional 

state (a form of arousal), rather than selective attention. Our physiological results as well as 

optogenetic manipulations corroborate this notion, demonstrating that a reduction in sensory 

TRN firing rates is required for optimal task performance. Because neither a sensory or 

motor effect was observed in these studies, we interpret these findings to reveal a permissive 

cognitive role for TRN in attentional states. This interpretation is consistent with the role of 

state-dependent cortical dynamics in accumulation of evidence required for decision-making 

(Brunton et al., 2013; Kubanek et al., 2013).

The involvement of TRN in cognitive function offers a unique perspective on connecting a 

number of concepts in neuroscience that had previously been studied separately. For 

example, while our study examined the participation of TRN microcircuits in sleep and 

attentional states separately, the sub-network architecture of TRN may allow for flexible 

switching between processing of external input and internal constructs in cognitive tasks, 

facilitating selective thalamo-cortical network engagement (Roth et al., 2009). Interestingly, 

recent experiments in humans have shown that rapid changes in arousal measures, such as 

pupil diameter, predict successful performance on cognitive tasks requiring the use of 

external information to update internal beliefs (Nassar et al., 2012). Given the state-

dependent modulation of TRN neurons, these microcircuits may offer a mechanistic link 

between subtle changes in arousal and cognitive performance. In addition, these sub-

networks offer a mammalian example of how the same neurons can switch their 

functionality in a behaviorally-relevant manner, a long recognized attribute of small circuits 

in model systems (Bargmann and Marder, 2013).

Our findings also offer a unique perspective on cognitive dysfunction, which appears to be 

central to a number of neurodevelopmental and neuropsychiatric disorders (Coe et al., 2012; 

Stefansson et al., 2014). While inhibitory circuits have long been recognized to be disrupted 

in several of these disorders, the focus has been on cortical interneurons (Gonzalez-Burgos 

and Lewis, 2012). Dissecting TRN microcircuit architecture and examining its participation 

in cognitive function is a first step in understanding how its dysfunction may contribute to 

brain disorders. Given the role of thalamus in regulating cortical states, it would not be 

surprising that its inhibitory dysfunction contributes to a number of brain disorders (Barch 

and Ceaser, 2012; Fitzgerald et al., 2000).

Spindle-related microcircuitry

Our findings that TRN neurons associated with spindle oscillations influence thalamic 

sensory processing in a state-dependent fashion provide a mechanism for the link between 

spindles and sleep stability (Dang-Vu et al., 2010; Wimmer et al., 2012). In addition, they 

link sensory processing in sleep to that during attentional states, which to our knowledge, 

has never been explicitly demonstrated. Spindle-associated TRN microcircuits, controlling 

sensory processing across states of vigilance may explain the long recognized association 
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between spindles and cognitive performance (Fogel and Smith, 2010), and may relate to the 

association between spindles and cognitive dysfunction in schizophrenia (Ferrarelli et al., 

2010; Keshavan et al., 2011).

Relevance to offline processing

Could our findings be placed in a larger context of hippocampal-thalamo-cortical interaction 

underlying online behavior versus offline memory processing? We think yes. The 

hippocampus sends monosynaptic input to cingulate and retrosplenial cortices, areas that are 

connected to the anterior thalamic complex. Damage to any of these structures is known to 

result in spatial memory deficits (Rolls, 2013). As such, limbic TRN activity may be 

permissive to offline hippocampal-thalamo-cortical interactions evident by reduced firing 

rate of these neurons during SWS (Fig. 5). The elevated firing of these neurons during active 

wakefulness may set a higher inhibitory tone in the anterior complex during behavioral 

arousal. The role of this inhibition in shaping online processing of these neurons, and their 

engagement in behavior is an open but intriguing question.

The role of hippocampus and associated limbic circuitry in memory processing extends well 

beyond sleep, as hippocampal-cortical interactions are required for basic cognitive tasks 

requiring online encoding and retrieval of memories (Preston and Eichenbaum, 2013). 

Recent findings of default-mode network engagement in these tasks suggest large network 

functional organization (Ward et al., 2013), in which thalamic modulation of cortical 

dynamics may be necessary. The role of TRN in these large scale functional interactions will 

undoubtedly be an exciting area of investigation, with broad basic and translational 

implications.

Experimental Procedures

Animals

Seven 4-6 month old male mice in a C57Bl6/J background were used for the first data set 

(Figs. 1-3). Three VGAT-Cre mice were used for visual thalamic optogenetic tagging and 

two mice used for anterior thalamic optogenetic tagging (Figs. 4 and 5). Four VGAT-Cre 

mice were used for the optogenetic activation experiments and four others were used for the 

optogenetic inhibition (Fig. 6). A total of seven VGAT-Cre mice were used for histology 

experiments (Fig. S1). All research involving mice have been conducted according to the 

Institutional Animal Care and Use Committee (IACUC) guidelines at MIT. All procedures 

were approved by the IACUC.

Electrophysiological recording

Following recovery, each animal was connected to two 16-channel preamplifier headstages 

or a single, custom made 32-channel preamplifier headstage (Neuralynx, Bozeman, MT). 

All data were recorded using a Neuralynx Digilynx recording system. Signals from each 

stereotrode were amplified, filtered between 0.1 Hz and 9 kHz and digitized at 

approximately 30 kHz. Local field potentials (LFPs) were collected from a single channel on 

each stereotrode. The LFP and EEG traces were amplified and filtered between 0.1 Hz and 

30 kHz. The EEG was acquired as a referential signal between the ipsilateral frontal lead (at 
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approximately A/P: +0.5mm, M/L: 0.5mm, D/V, 0.1-0.2mm, directed at cingulate) and 

cerebellar reference. For experiments involving the tagging of visual neurons, the EEG was 

a referential signal between primary visual cortex and the cerebellum. Stereotrodes were 

slowly lowered (over several days) in 125-250 micron steps. Spike sorting was performed 

offline using the MClust toolbox (http://redishlab.neuroscience.umn.edu/mclust/

MClust.html), based on spike amplitudes and energies on the two electrodes of each 

stereotrode. Units were separated by hand, and cross-correlation and autocorrelation 

analyses were used to confirm unit separation.

Virus injections

For anatomical tracing experiments, AAV-hSyn-DIO-EGFP (serotype 2) was injected at 

multiple volumes (200nL – 1μL) into thalamus of VGAT-Cre animals (A/P, −0.6mm to 

−1.0mm, M/L: 0.9mm; D/V −3.5mm) unilaterally. Animals were allowed to recover for at 

least 3 weeks for optimal virus expression, after which they were prepared for histological 

experiments.

For optogenetic manipulation experiments, AAV-EF1α-DIO-ChR2-EYFP and AAV-EF1α-

DIO-eNpHR3.0-EYFP (all serotype 2) were used. These viruses were produced by the 

vector core at UNC Chapel Hill with titers around 1012 VG/mL. Viruses (250-350nl) were 

injected bilaterally into TRN of VGAT-cre mice (A/P, −0.6mm; ±M/L: 0.9mm; D/V 

−3.5mm) using a quintessential stereotactic injector (Stoelting, #53311). Mice were allowed 

to recover for 2-4 weeks following injection to allow for virus expression. For retrograde 

histological tracing and optogenetic tagging experiments (Figs. 5 and S5), pseudotyped 

retrograde lentiviruses (RG-LV) were used. Visually connected TRN neurons were labelled 

through virus injections (0.5-0.8μl) into visual thalamus (AP, −2.1mm, ML, 2mm, DV, 

2.5mm) whereas anterior thalamic connected TRN neurons were targeted through injections 

into the anterior complex (AP, −0.7mm, ML, 0.65mm, DV, −2.6mm). RG-LV contained the 

EF1α promoter, followed by a double flox cassette in which the floxed gene (in reverse 

orientation) was either EGFP, channelrhodopsin (ChR2), or halorhodopsin (eNpHR3.0), and 

followed by the woodchuck posttranscriptional regulatory element (WPRE). All vectors 

were modified from the original lentivector pFCGW. For production of the viral vector, the 

expression plasmid along with two helper plasmids Δ8.9 and FuG–B2 (a chimeric envelope 

protein composed of the extracellular and transmembrane domains of rabies virus 

glycoprotein (RG) and the cytoplasmic domain of VSV-G; pCAGGS–FuG– B2; a gift from 

Kazuto Kobayashi, Fukushima Medical University, Fukushima, Japan), were transfected 

into HEK293T cells with Lipofectamine2000 (Invitrogen). Viral particles were collected 

from the cell culture medium, pelleted by ultracentrifugation at 65,000 ×g (m/s2) for 2.5 h, 

resuspended in PBS, washed and concentrated using Amicon Ultra 4. Titers were between 

108-109 VG/mL. Mice were allowed 4-6 weeks of recovery following surgery to allow for 

retrograde virus expression.

On-line optogenetic tagging of TRN units

A fiber optic patch cord (Doric Lenses) delivered light from a 473 nm laser (Opto Engine, 

Midvale, UT) to the fiber optic connector on the animal's implant. Prior to connecting to the 

animal, laser power was measured and titrated to ~10 mW using a neutral density filter 
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(Thorlabs, Newton, NJ). Power at the tip of the implanted fiber was ~50% of this value, 

based on measurements prior to surgery. Thus, there was 4-5 mW of power at the fiber tip, 

or 140-180 mW.mm−2 for a 200-μm fiber. An analog stimulus generator was used to control 

laser pulses of 10 ms duration and 0.01 Hz frequency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- Connectivity-based optogenetic TRN dissection reveals a sub-network architecture

- Sensory-projecting TRN regulates cortical processing across sleep and attention

- Limbic-projecting TRN shows general regulation by arousal

- Optogenetic suppression of visual-projecting TRN in attention enhances 

performance
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Figure 1. Independently adjustable multi-electrode recordings in the TRN
(A) The dorsal part of TRN was targeted by implanting an independently adjustable multi-

electrode implant (16 independently movable microdrives, only 6-12 loaded in any 

experiment) at 15-degree angle relative to midline. Numbers denote different anatomical 

structures at which physiological recordings were made and shown in B and C. (B) 
Broadband (0.1Hz-32kHz) signal recorded at the different anatomical stations show the 

physiological trajectory of the recordings. Note the absence of spiking in the two white 

matter crossings (corpus callosum, 2 and internal capsule, 4). (C) Bandpass filtered signal 

(600Hz-10kHz) of traces in B showing spike trains. (D) Clustered neurons from traces 1, 3 

and 5 showing the waveforms of a putative cortical fast spiking interneuron (top), a striatal 

medium spiny neuron (middle) and finally a TRN neuron (bottom), highlighted inset shows 

a burst event of this unit, exhibiting the accelerando-decelerando burst structure previously 

described. (E) Histological verification of the recording by electrode track (white 

arrowheads) and lesion at the tip (yellow arrowheads). (F) Distribution of TRN lesions seen 

across 6 out of 7 mice recorded. Numbers denote A/P distance from Bregma in mm. (G) A 

total of 195 putative TRN units with “thin” spikes were recorded (crimson), which had 

significantly different spike waveform features (peak-to-trough time and trough halfwidth) 

than 102 putative thalamic units (red). See also Fig. S1.
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Figure 2. Functional segregation of TRN sub-networks in SWS
(A) Two simultaneously recorded TRN neurons with time-varying firing rates that are 

positively and negatively correlated with cortical spindle power. (B) Bi-modal distribution 

(Hartigan's dip test, P < 10−5) of this correlation across the dataset (n =195 TRN neurons, 7 

mice). Grey represents the undetermined group (Methods). (C) Example of a detected EEG 

spindle. (D) Peri-event time histogram (PETH) triggered by the onset of cortical spindles 

showing elevated firing rate of a positively-correlated neuron (determined by analysis 

similar to A) during spindle events. (E) This is significant across that population (P < 10−8, 

rank-sum test). (F) Two positively correlated (to spindle power, as in A) TRN neuronal 

spike trains in relation to a spindle event. (G) Spindle-phase histograms of two TRN neurons 

(red: negatively-correlated; blue: positively-correlated to spindle power, as in A). Note the 

higher phase locking for the positive-correlated neuron in this example. (H) Tendency for 

higher spindle phase-locking in these neurons as a group (weighted mean ± SEM, rank-sum 

test: P = 0.05 at the point of maximum modulation). (I) Negatively-correlated neurons are 

wake active (P < 0.01, rank-sum test), while positively-correlated neurons are state-

indifferent (P< 0.0001). See also Fig. S2 and table S1.
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Figure 3. Enhanced synchrony of SC neurons during SWS
(A) During SWS, SC neuronal spiking occurs near cortical slow wave troughs. (B-C) Spike 

delta phase-histogram of a SC neuron shows reduction of firing near the slow wave peaks. 

(D) As a population, SC neurons exhibit comparable delta phase-locking to AC neurons 

(shaded area denotes the group SEM), shown in the depth of their spike-phase modulation 

(SPM). (E) Delta wave peak-aligned PETH of the SC population (blue trace) shows stronger 

phase-alignment to cortical delta oscillations than the AC population (red trace). Shaded 

area is SEM. (F) Finding in E is further supported by plotting the histogram of the phase 

values (relative to delta wave peak) at which significantly modulated neurons exhibit 

minimum spike count. These distributions are significantly different (two-sample 

Kolmogorov-Smirnov test, P < 0.03). Note the peak in the SC neurons histogram, showing 

that these neurons exhibit little spiking around the peaks of delta oscillations. (G) Example 

of spike-time synchrony between two SC neurons (shaded area: [−50, 50] ms centered at 

zero lag) showing increased synchrony in SWS. (H) Spike-time synchrony (converted to Z-

score related to baseline) seen at the ensemble level (examples from four mice). Note the 

consistent overall elevation of spike-time synchrony among SC units (mouse 1: n=8; mouse 

5: n=7; mouse 6: n=5; mouse 7: n=9) during SWS compared to wakefulness. (I) Group 

analysis of these ensembles (SC: n = 13 ensembles from 4 mice, upper panel; AC: n = 9 
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ensembles from 4 mice, lower panel) shows an increase in SC sub-network synchrony 

during SWS. Color bar: Z-score. P-values: signed-rank test. See also Fig. S3.
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Figure 4. Optogenetic tagging of TRN neurons based on their thalamic targets
(A) Cartoon depiction of optogenetic tagging of visually-connected TRN neurons in mice. A 

retrograde lentivirus containing a Cre-dependent ChR2-EYFP is injected into the visual 

thalamus of a VGATCre mouse. 2-4 weeks later, ChR2 is robustly expressed in visually-

connected TRN. (B) Tagging of anterior complex-connected TRN, similar procedure to A. 

(C) Sections showing extracellular recording targets for visually-connected TRN (n = 3 

mice). (D) Peri-stimulus time histograms (PSTHs) from two visual tagged TRN neurons, 

showing optogenetic drive with short-latency responses (top) and visual drive with longer 

latency responses (bottom). (E-F) Similar depictions as in C-D, but for anterior complex-

projecting neurons. (G) Example brain sections showing electrolytic lesions of electrode tips 

for visually-connected TRN preparation. Confocal image on the right show electrode tips 

(white asterisk) near neurons expressing ChR2-EYFP (yellow arrowheads). (H) Similar 

figures to G, but for anterior complex-tagged TRN neurons.
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Figure 5. Intact TRN microcircuit dissection connects form to function
(A) Visual tagged neurons are positively correlated to cortical spindle power in SWS 

(P<10−8, signed-rank test), but (B) anterior tagged neurons are negatively correlated 

(P=0.006). (C) Anterior tagged neurons are wake active, while visual tagged neurons are 

state-indifferent. (D) Visual tagged neurons show stronger phase-locking to spindle 

oscillations (P<0.001, rank-sum test at the trough). (E) Visual-, but not anterior-, tagged 

neurons exhibit enhanced pair-wise spike-time synchrony in SWS (P-values: signed-rank 

test, numbers of axes denote Z-scores). (F) Visual detection task design ensures control over 

psychophysical parameters. The mouse is informed of a new trial by a white noise stimulus 

emitted from two side speakers. To initiate a trial, the mouse is required to hold its snout in a 

nose-poke for a period of 0.5-0.7s, ensuring that when the 0.5s stimulus is presented at one 

of the reward nose-pokes, the head is in the correct orientation to see it. The rotating disk 

ensures that the reward sites are only available following the stimulus, minimizing impulsive 

poking behavior. (G) Only visual tagged neurons show a reduction in firing rate (group 

mean ± SEM; P< 0.001, rank-sum test) during the attentional window of the visual detection 

task (yellow bar: stimulus). See also table S2.
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Figure 6. Bi-directional manipulation of cognitive performance by selective TRN targeting
(A) Schematic showing strategy for rendering the TRN optically sensitive. The TRN of a 

VGAT-Cre mouse is bilaterally injected with an AAV containing a double floxed 

optogenetic molecule cassette (in this example ChR2-EYFP), which is flipped into frame 

only in Cre-expressing neurons. Because thalamic relay nuclei are largely devoid of VGAT 

expressing neurons (except for LGN, which is sufficiently far away from the injection site), 

ChR2-EYFP expression is limited to the TRN. A similar strategy is used for eNpHR3.0-

EYFP experiments (F-H). (B, left) Two PSTHs of a TRN unit and a thalamic unit in 

response to a 50Hz laser stimulus (2ms pulse duration, 1s duration), showing broad 

elevation in spiking for the TRN unit and broad suppression of spiking in the thalamic unit. 

(B, right) Timeline of optogenetic stimulation regimes in relation to task phases. The same 

strategy is adopted for optogenetic inhibition. (C-D) Examples of a selective TRN 

stimulation session carried out during all task phases (C) or avoiding the initiation phase, but 

of similar length, ‘control stimulation’ (D). Note the increased number of long-latency trials 
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in the task stimulation but not the control one (Black circle: left correct trial, Black square: 

right correct trial, Red circle: left incorrect trial, Red square: right incorrect trial, Green 

cross: catch trials, laser trials are highlighted in blue). (F) Cumulative distribution of trial 

latencies (to collect reward) from individual mice, showing diminished performance 

following TRN activation during the task in all four mice. (F-G) Example sessions for 

eNpHR3.0-mediated TRN inhibition as in (CD). (H) Cumulative distribution of trial 

latencies from individual mice in response to TRN inhibition in the task, showing the 

opposite behavioral effect to stimulation. (I) Set-up for subnetwork specific optogenetic 

manipulations. (J) Optogenetic activation and inhibition of TRN sub-network projecting to 

visual thalamus diminishes and enhances performance respectively, while similar 

manipulations of the anterior projecting TRN have an opposite but non-significant effect (n 

= 6 sessions, 2 mice for each manipulation, P-values: signed-rank test). See also Fig. S6, 

Movies S1 and S2.
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Figure 7. Cartoon depiction of state-dependent thalamic inhibition
During active wakefulness inhibition in sensory and limbic thalamic nuclei is balanced. As 

the brain transitions to SWS, synchrony among sensory TRN neurons results in enhanced 

inhibition of sensory thalamic nuclei contributing to gating of external input. The reduction 

in firing rate of limbic-connected neurons is likely to result in reduced inhibition in limbic 

thalamus, perhaps facilitating offline processing. During attentional states, sensory neuronal 

firing rate is reduced, contributing to enhanced sensory thalamic engagement in processing 

of external stimuli. Although limbic thalamic neurons do not show an overall change in 

firing rate during these states, individual neurons may participate in shaping limbic 

processing during these states.
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